
RF                                                           #97RM-102:                                                                           RF1

Aerospace Applications of Weibull
and Monte Carlo Simulation
with Importance Sampling

Salvatore J. Bavuso; NASA; Hampton

Key Words:  Weibull, Reliability, Monte Carlo, simulation, importance sampling,
                     HARP (Hybrid Automated Reliability Prediction), Fault tree,
                     HIRel (HARP integrated Reliability tool system)

Abstract/Summary

  Recent developments in reliability modeling
and computer technology have made it practical
to use the Weibull time to failure distribution to
model the system reliability of complex fault-
tolerant computer-based systems.  These system
models are becoming increasingly popular in
space systems applications as a result of
mounting data that support the decreasing
Weibull failure distribution and the expectation
of increased system reliability.  This presentation
introduces the new reliability modeling
developments and demonstrates their application
to a novel space system application.  The
application is a proposed guidance, navigation,
and control (GN&C) system for use in a long
duration manned spacecraft for a possible Mars
mission.  Comparisons to the constant failure rate
model are presented and the ramifications of
doing so are discussed.
  The combination of modeling spacecraft
systems with the Weibull time to failure
distribution and the modeling of cold or warm
spares to reflect reduced power usage presents
the reliability modeler with a very difficult
mathematical model to evaluate.  Such reliability
models are non-Markovian because the model
requires multiple clocks. One keeps track of
component failures whose clock starts at the
initiation of the mission and the others start when
cold or warm Weibull spares are fully powered,
i.e., when switched on.  The general
mathematical model which describes these
systems is given by the Chapman-Kolmogorov
equations.
  Presently, the most general solution
methodology for such models is the Monte Carlo
simulation

method.  Although very powerful and general,
the Monte Carlo simulation method has not been
used for highly reliable or long duration systems
because of the enormous computer resources
required to evaluate these models.  Two recent
developments have mitigated this shortcoming:
The most obvious is the availability of fast and
inexpensive microcomputer systems whose
computational speed is ever increasing and
whose cost is increasing less proportionally.  The
second development which is less known is the
probabilistic modeling technique called
importance sampling.  Although this technique
has been available for at least two decades, its
use has been limited.  Importance sampling is a
variance reduction technique.  This technique
allows the efficient sampling of failure events
that have very long mean times to failure and
reduces the spread (variance) of predicted system
failure events; thus giving greater confidence for
the predicted mean value (system reliability).
The increased sampling efficiency reduces
computational time and cost and increases the
precision of the computed results.
  Importance sampling requires the user to
specify certain biasing values.  In the general
application of importance sampling, the best
assignment of these biasing values is difficult to
derive, and the success of the technique hinges
critically on the correct choice.  This problem
has been an important factor in limiting the use
of importance sampling.  The Monte Carlo
integrated Hybrid Automated Reliability
Program (MCI-HARP) has sidestepped this
difficulty by requiring a specific system model.
The system model is always a Markov chain
without repair.  The Markov chain can more
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generally be semi-Markov with non-constant
failure rates.  Because Markov chain models can
be huge and difficult to specify, MCI-HARP uses
the fault tree notation instead.  Moreover, the
fault tree notation includes order dependent gates
to increase the modeling flexibility and power.
This notation is completely compatible with
HARP; so for fault tree models that HARP can
solve, MCI-HARP can also solve them.  The
dualism of solution techniques can be useful for
verification of the model solution.
  The Monte Carlo simulation offers one other
important feature necessary for modeling today’s
complex systems that often involve order
dependent failures.  Because the technique
searches through the fault tree to determine the
system state, it is unnecessary to store the system
transition matrix in memory.  The number of
elements in the transition matrix is given by 22N

for N system components; and even with sparse
matrix techniques, analytical solutions quickly
become limited by computer memory resources
for modest to large system models.  The HARP
program has this limitation which it attempts to
minimize by using a number of approximation
techniques including truncation-bounding and
behavioral decomposition.
  MCI-HARP has made it practical to model
some complex systems and produce results which
at first appear to be counter intuitive.  When
President Bush proposed that NASA should
direct its attention toward a manned mission to
Mars, some of us at NASA’s Langley Research
Center explored the feasibility of state-of-the-art
(SOA) fault-tolerant guidance, navigation, and
control (GN&C) systems being reliable enough
for such a mission.   Using SOA constant failure
rate data, we concluded that the reliability of the
GN&C would be too low to justify such a
mission.  Although, I was aware at the time of the
mounting data to support the use of Weibull
decreasing failure rates in spacecraft systems,  I
had no practical way to model such systems with
cold or warm spares.  Intuitively I believed that
decreasing failure rates and warm spares would
increase the predicted system reliability, but
whether or not enough reliability gain could be
attained was beyond my computational reach.
The HARP program is capable of correctly
modeling Weibull decreasing failure rates with or
without hot spares but not with warm or cold
spares.
  By the end of 1990, a prototype Monte Carlo
HARP was developed by researchers at
Northwestern University under the leadership of

E.E. Lewis.  The idea of structuring the
simulation based on the Markov chain was first
presented to me by Robert Geist at Clemson
University.  Under grant to NASA Langley,
Northwestern implemented this concept using the
HARP program’s fault/error-handling models.
Mark Boyd (a HARP codeveloper now at
NASA’s Ames Research Center) further
integrated the Monte Carlo simulator with
HARP’s fault tree notation, and I later
reengineered the entire program to be consistent
with HARP (now called Monte Carlo integrated
HARP, i.e.,  MCI-HARP).  With a working
program on hand, Boyd and I used MCI-HARP
to explore the effects of decreasing failure rates
with warm and cold spares on a Jet Propulsion
Laboratory’s proposed GN&C system, a 3-
dimensional hypercube fault-tolerant system.
The details of the study can be found in the 1993
RAMS proceedings; however, some of the results
are worth mentioning here.
  Although the study examined the system
reliability for missions times of 1 to 10 years, 10
years was considered the target mission time.  An
acceptable GN&C unreliability for a 10 year
mission was specified to be less than 50%, i.e., a
reliability greater than or equal to 50%.  When
all components were assigned constant failures
rates (CFR) and all spares were hot, the system
unreliability was computed to be 63%,
confirming our previous studies which also
predicted an unacceptable unreliability.  Using
decreasing failure rates (DFR) with hot spares
and a conservative shape value of 0.5, a three
orders of magnitude improvement was computed
with an unreliability of 0.078%, clearly
demonstrating the beneficial effect of DFRs.
That’s not to say that such an improvement can
actually be obtained.  The important point to note
here is the potential for reliability gain when
using DFRs.  Actual gains will depend on the
accuracy of the DFR data.  In this study, we
assumed the initial instantaneous failure rate was
equal to a component’s CFR; thus the
instantaneous failure rate of the DFR will always
be lower than the CFR after the initial mission
time.  Whether or not this assumption is
reasonable, is yet to be determined.
  When the spares are allowed to be cold, the
CFR model produced an unreliability of 57%,
about a 10% improvement over the hot CFR
spare model, an expected trend but still
unacceptable.  This outcome is expected because,
hot spares can fail before they can be used to
replace failed operational components; where as
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cold spares cannot fail until they are powered up.
By comparison, the cold spare DFR model
produced an unreliability of 0.079% , about a 1%
improvement over the hot spare DFR model, and
this small improvement was not expected.  The
implication is that there is little to gain by using
cold DFR spares from a reliability point of view.
In fact, some of our results (see RAMS
proceedings 1993) have shown that cold DFRs
produce a higher unreliability than with hot
DFRs.  If power conservation is not a design
factor, these results suggest that DFR spares
should be powered up throughout the mission in
order to enhance fault detection (not addressed in
these reported results).  These results make even
a stronger argument for using hot DFR spares if
the shape value is less than 0.5 as suggested by
Hecht at Sohar INC.
  Why do these results run counter to one’s
intuition?  In the CFR cold spare model, a spare
is mathematically considered to be brand new on
switch-in with the same failure rate as the hot
spares.  With DFR spares, the cold DFR spare is
also considered to be brand new, but its
instantaneous failure rate at switch-in is at its
maximum while the hot operating components
(including hot operational spares) have lower
instantaneous failure rates.   Another interesting
observation results from this study - although
using cold CFR spares are not physically
realistic, models using them produce an
optimistic reliability prediction - the best
possible reliability prediction.  This property,
however, does not apply to cold DFR spare
models because the instantaneous failure rate of a
warm spare will be less than that of a cold DFR
spare when it becomes operational.
  One concludes from these studies that DFR
models predict substantially greater reliability
than do CFR models and that the use of Monte
Carlo simulation with importance sampling
makes it possible to examine these trade-offs.
Moreover, the reliability analyst must be mindful
of the counter intuitive properties of DFR models
and attempt to model  such systems with warm
spares in lieu of cold spare models to obtain
accurate predictions.
  With recent renewed interest in a manned
mission to Mars, proposed GN&C systems for
this type of application should include DFR
models, and capabilities like MCI-HARP will
make the reliability evaluation practical and
meaningful.
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Monte Carlo Simulation

• Reliability Block Diagrams
• Fault trees
• Markov chains

General modeling technique applies to modeling notations:

Allows:

• Order dependency
• Time varying lambdas
• Hot, cold, & warm spares with above

Fault tree notation most used:

• Flexible
• Compact
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Transition time to leave state K1 :  tn = to - (1/ΥK1)Ln(1 - ζ )

Markov chain

State transition rate   =>            ΥK1  = λ1 + λ2

State CDF           =>           F(tn | to,K1) = 1- e- ΥK1(tn - to)
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Determine which comp. failed: 
Divide unit interval into sub-intervals proportional to operational
comp. & use random number to pick an interval corresponding
to failed comp.

When    λ1 < λ2

    ζ  < λ1/(λ1 + λ2)  => λ1  caused failure

                             else λ2  caused failure

λ1/(λ1 + λ2)                  λ2/(λ1 + λ2)
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t ->

Determine if System Failure:

•Traverse F.T. with depth first search.
•If top event occurs, start new history & drop tally in bucket

Else
•Continue sampling from new state Ki using

tn => to

History end if tn >= Tm irrespective of failures remaining

System failure occurs - top event of F.T. occurs

Q sys(t) = Σ Nf  / NH -> for point estimate 

tn = to - (1/Υki)Ln(1 - ζ )

Q sys(t)

v

v



Highly Reliable Systems cause Monte Carlo simulations problems

tn = to - (1/ΥKi
)Ln(1 - ζ )

      ΥKi
   <<< 1    =>   - (1/ΥKi

)Ln(1 - ζ )    >>  Tm

So tn >> Tm

Means:

 * most trials wil l be dropped & not contribute

 *  very wide variance
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Importance
Sampling



From state CDF :      F(tn | to,Ki) = 1- e- ΥKi(tn - to)

Define new CDF:

             FF(tn | to,Ki) = F(tn | to,Ki) / F(Tm | to,Ki)

                               = {1- e- ΥKi(tn - to)}/ {1- e- ΥKi(Tm - to)}

Let    FF(tn | to,Ki)  = ζ     and solve for tn

               An Importance Sampling Technique

ttnn = to - (1/ΥKi
)Ln{1 - ζ[1- e- ΥKi(Tm - to)]}

****** ****** t o < ttn  n  < Tm  ******
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 Unbias tallies with weight wi for each trial i

        where wi = 1  initially

            wi+1 -> wi [1- e- ΥKi(Tm - to)]

Qsys ~ 1/N Σ wi = µ       for      ttnn =< Tm

Var = 1/N-1 Σn=1 [wn - µ]2
N

_


